Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(4): e13692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681511

RESUMO

Endangered wild fish populations are commonly supported by hatchery propagation. However, hatchery-reared fish experience very different selective pressures compared to their wild counterparts, potentially causing genotype-by-environment interactions (G × E) in essential fitness traits. We experimentally studied early selection in a critically endangered landlocked Atlantic salmon population, first from fertilization to the swim-up stage in a common hatchery setting, and thereafter until the age of 5 months in two contrasting rearing environments. Swim-up progeny were moved either to standard indoor hatchery tanks involving conventional husbandry or to seminatural outdoor channels providing only natural food. After the first summer, sampled survivors were assigned to their families by genotyping. Early survival until the swim-up stage was mostly determined by maternal effects, but also involved significant variation due to sires and full-sib families (potential genetic effects). High on-growing survival in hatchery tanks (88.7%) maintained a more even distribution among families (relative share 1.5%-4.2%) than the seminatural environment (0.0%-5.4%). This heterogeneity was mostly maternal, whereas no independent paternal effect occurred. Heritability estimates were high for body size traits in both environments (0.62-0.69). Genetic correlations between the environments were significantly positive for body size traits (0.67-0.69), and high body condition in hatchery was also genetically linked to rapid growth in the seminatural environment (0.54). Additive and phenotypic growth variation increased in the seminatural environment, but scaling effects probably played a less significant role for G × E, compared to re-ranking of genotypes. Our results suggest that not only maternal effects, but also genetic effects, direct selection according to the environmental conditions experienced. Consistently high genetic variation in growth implies that, despite its low overall genetic diversity and long history in captive rearing (>50 years), this landlocked Atlantic salmon population still possesses adaptive potential for response to change from hatchery rearing back to more natural conditions.

2.
Am Nat ; 200(5): 646-661, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260846

RESUMO

AbstractHosts can defend themselves against parasites either by preventing or limiting infections (resistance) or by limiting parasite-induced damage (tolerance). However, it remains underexplored how these defense types vary over host development with shifting patterns of resource allocation priorities. Here, we studied the role played by developmental stage in resistance and tolerance in Atlantic salmon (Salmo salar). This anadromous fish has distinct life stages related to living in freshwater and seawater. We experimentally exposed 1-year-old salmon, either at the freshwater stage or at the stage transitioning to the marine phase, to the trematode Diplostomum pseudospathaceum. Using 56 pedigreed families and multivariate animal models, we show that developmental transition is associated with reduced resistance but does not affect tolerance. Furthermore, by comparing tolerance slopes (host fitness against parasite load) based on additive genetic effects among infected and unexposed control relatives, we observed that the slopes can be largely independent of the infection, that is, they may not reflect tolerance. Together, our results suggest that the relative importance of different defense types may vary with host development and emphasize the importance of including control treatments for more confident interpretations of tolerance estimates.


Assuntos
Doenças dos Peixes , Parasitos , Trematódeos , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/parasitologia , Água do Mar , Água Doce
3.
Proc Biol Sci ; 289(1978): 20220851, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35858058

RESUMO

One of the most well-known life-history continuums is the fast-slow axis, where 'fast' individuals mature earlier than 'slow' individuals. 'Fast' individuals are predicted to be more active than 'slow' individuals because high activity is required to maintain a fast life-history strategy. Recent meta-analyses revealed mixed evidence for such integration. Here, we test whether known life-history genotypes differ in activity expression by using Atlantic salmon (Salmo salar) as a model. In salmon, variation in Vgll3, a transcription cofactor, explains approximately 40% of variation in maturation timing. We predicted that the allele related to early maturation (vgll3*E) would be associated with higher activity. We used an automated surveillance system to follow approximately 1900 juveniles including both migrants and non-migrants (i.e. smolt and parr fish, respectively) in semi-natural conditions over 31 days (approx. 580 000 activity measurements). In migrants, but not in non-migrants, vgll3 explained variation in activity according to our prediction in a sex-dependent manner. Specifically, in females the vgll3*E allele was related to increasing activity, whereas in males the vgll3*L allele (later maturation allele) was related to increasing activity. These sex-dependent effects might be a mechanism maintaining within-population genetic life-history variation.


Assuntos
Características de História de Vida , Salmo salar , Alelos , Animais , Feminino , Genótipo , Masculino , Salmo salar/genética , Salmo salar/metabolismo , Fatores de Transcrição/genética
4.
PLoS One ; 16(12): e0260944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855922

RESUMO

Enrichment of rearing environment with natural elements has been suggested to improve the welfare and post-release survival of cultured fish. We studied the combined effects of shelter structures, periodical water flow and water level changes on pre- and post-release performance of critically endangered landlocked Atlantic salmon (Salmo salar m. sebago). Relative to standard (plain) rearing tanks, provision of enrichment improved fish condition factor and survival during the first year of rearing when most mortality was attributable to parasitic and bacterial infections. The consequent higher density in enriched tanks probably induced greater growth variation and more dorsal fin damages than found in fish of standard tanks. Possibly this was partly due to the applied changes in water level. Experimentally determined smolt migration tendency at age 3 did not differ, on average, between the rearing groups, but enriched-reared fish showed clearly less variation in total movement activity than standard-reared fish. Experimental angling in earthen ponds did not suggest divergent vulnerability between the differentially reared fish at age 3, but decreased condition during the preceding growth season increased vulnerability to fishing. Based on long-term post-stocking tag returns in large-lake fisheries, fish length at release but not rearing method affected the capture rates of fish released at age 2. When released at age 3 the fish grown in enriched environment had a higher risk to be captured with stationary gears and earlier by hook and line gears compared to standard-reared conspecifics. Earlier time of maximal smolt migration activity was associated with an increased risk of being captured. We suggest that environmental enrichment may modulate growth- and behavior-related qualities that indirectly increased the vulnerability to fishing in natural conditions but not in experimental setting. The favorable effects of enrichment on early survival encourages adopting enriched rearing practices in supportive breeding of landlocked salmon.


Assuntos
Criação de Animais Domésticos/métodos , Migração Animal , Meio Ambiente , Pesqueiros/estatística & dados numéricos , Reprodução , Salmo salar/fisiologia , Animais , Estações do Ano
5.
Antibiotics (Basel) ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810018

RESUMO

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.

6.
Ecol Evol ; 11(6): 2630-2644, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767825

RESUMO

The behavior of organisms can be subject to human-induced selection such as that arising from fishing. Angling is expected to induce mortality on fish with bold and explorative behavior, which are behaviors commonly linked to a high standard metabolic rate. We studied the transgenerational response of brown trout (Salmo trutta) to angling-induced selection by examining the behavior and metabolism of 1-year-old parr between parents that were or were not captured by experimental fly fishing. We performed the angling selection experiment on both a wild and a captive population, and compared the offspring for standard metabolic rate and behavior under predation risk in common garden conditions. Angling had population-specific effects on risk taking and exploration tendency, but no effects on standard metabolic rate. Our study adds to the evidence that angling can induce transgenerational responses on fish personality. However, understanding the mechanisms of divergent responses between the populations requires further study on the selectivity of angling in various conditions.

7.
Oecologia ; 195(1): 155-161, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33387006

RESUMO

The reduction in host fitness caused by parasite infections (virulence) depends on infection intensity and the degree of damage caused per parasite. Environmental conditions can shape both virulence components, but in contrast to infection intensity, environmental impacts on per-parasite damage are poorly understood. Here, we studied the effect of ambient temperature on per-parasite damage, which is jointly determined by the ability of parasites to induce harm (per-parasite pathogenicity) and the ability of hosts to limit damage (tolerance). We experimentally exposed two salmonid species, Atlantic salmon (Salmo salar) and sea trout (Salmo trutta), to replicated genotypes of the eye fluke Diplostomum pseudospathaceum. After development of health damage (eye cataracts) in warm water (16 °C) during the first 12 weeks post exposure, we maintained the fish at either 5 °C (cold water) or 16 °C for another 8 weeks and quantified changes in cataracts as a function of parasite load. We found that per-parasite damage was reduced in cold compared to warm water, suggesting that cold temperatures improved host health. Per-parasite damage was also affected by parasite genotype and host species, but these effects did not change with temperature. Our findings suggest that cold-water seasons, which are often neglected in host-parasite studies due to low infection risk, could allow hosts to recuperate and thus, may have important implications for the ecology and epidemiology of parasite infections.


Assuntos
Doenças dos Peixes , Parasitos , Salmo salar , Trematódeos , Animais , Interações Hospedeiro-Parasita , Truta , Água
8.
Proc Biol Sci ; 287(1925): 20200388, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32315591

RESUMO

Genetic variation in defence against parasite infections is fundamental for host-parasite evolution. The overall level of defence of a host individual or population includes mechanisms that reduce parasite exposure (avoidance), establishment (resistance) or pathogenicity (tolerance). However, how these traits operate and evolve in concert is not well understood. Here, we investigated genetic variation in and associations between avoidance, resistance and tolerance in a natural host-parasite system. Replicated populations of Atlantic salmon (Salmo salar) and sea trout (an anadromous form of brown trout, Salmo trutta) were raised under common garden conditions and infected with the eye fluke Diplostomum pseudospathaceum. We demonstrate significant genetic variation in the defence traits across host populations and negative associations between the traits, with the most resistant populations showing the weakest avoidance and the lowest infection tolerance. These results are suggestive of trade-offs between different components of defence and possibly underlie the genetic variation in defence traits observed in the wild. Because the three defence mechanisms affect host-parasite evolution in profoundly different ways, we emphasize the importance of studying these traits in concert.


Assuntos
Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Animais , Parasitos , Salmo salar/parasitologia , Salmo salar/fisiologia , Trematódeos , Truta/parasitologia , Truta/fisiologia
9.
G3 (Bethesda) ; 9(9): 2887-2896, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31289024

RESUMO

A better understanding of the environmental and genetic contribution to migratory behavior and the evolution of traits linked to migration is crucial for fish conservation and fisheries management. Up to date, a few genes with unequivocal influence on the adoption of alternative migration strategies have been identified in salmonids. Here, we used a common garden set-up to measure individual migration distances of generally highly polymorphic brown trout Salmo trutta from two populations. Fish from the assumedly resident population showed clearly shorter migration distances than the fish from the assumed migratory population at the ages of 2 and 3 years. By using two alternative analytical pipelines with 22186 and 18264 SNPs obtained through RAD-sequencing, we searched for associations between individual migration distance, and both called genotypes and genotype probabilities. None of the SNPs showed statistically significant individual effects on migration after correction for multiple testing. By choosing a less stringent threshold, defined as an overlap of the top 0.1% SNPs identified by the analytical pipelines, GAPIT and Angsd, we identified eight candidate genes that are potentially linked to individual migration distance. While our results demonstrate large individual and population level differences in migration distances, the detected genetic associations were weak suggesting that migration traits likely have multigenic control.


Assuntos
Migração Animal/fisiologia , Polimorfismo de Nucleotídeo Único , Salmonidae/genética , Animais , Feminino , Finlândia , Estudo de Associação Genômica Ampla , Masculino , Fenótipo , Salmonidae/fisiologia
10.
Ecol Evol ; 9(4): 2106-2120, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847096

RESUMO

The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.

11.
Sci Rep ; 9(1): 2771, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808889

RESUMO

Although hybridization between populations with low genetic diversity may induce heterosis, it can also lead to reduced fitness of hybrid offspring through outbreeding depression and loss of local adaptations. Using a half-sib mating design, we studied on brown trout (Salmo trutta) how hybridization of migratory hatchery-strain females with males from various strains would affect early mortality, growth and personality in F1 offspring. No differences in mortality or alevin body length were found between the crossing groups by the end of the yolk-sac stage. At later developmental stages, higher mortality and slower growth in one of the geographically distant hybrid groups indicated potential outbreeding depression. The personality component indicating boldness and exploration tendency showed fairly low genetic variation and no phenotypic differences among the crossing groups while the personality component related to freezing behavior indicated stronger freezing responses in the purebred and local cross strain when compared to the two other strains. However, the purebred hatchery strain possessed stronger additive genetic tendency for boldness and explorative behavior, and weaker genetic tendency for freezing behavior, when compared to the wild × hatchery hybrid group. Our results add to the cumulating evidence of risks related to the stocking of fish strains from non-native origins.


Assuntos
Variação Genética , Genética Populacional , Hibridização Genética , Repetições de Microssatélites , Truta/crescimento & desenvolvimento , Truta/genética , Animais , Reprodução , Especificidade da Espécie , Truta/classificação
12.
Physiol Biochem Zool ; 91(6): 1115-1128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30295572

RESUMO

The pace-of-life syndrome (POLS) concept predicts that individuals with high baseline metabolic rates demonstrate high boldness, aggressiveness, and activity, especially in food acquisition, with associated relatively greater energy requirements. In fishes, these behaviors may increase individual vulnerability to angling. To test the predictions of the POLS concept, we quantified individual standard metabolic rate (SMR) and boldness in both wild-caught and hatchery-reared Eurasian perch (Perca fluviatilis). We found both SMR and boldness to be repeatable traits but detected no correlation between them. Individual vulnerability to angling was assessed in the hatchery-reared perch, but we found no difference in boldness or SMR between vulnerable and nonvulnerable perch. Wild-caught perch were ice fished using either natural or artificial bait, and we observed no differences in boldness or SMR with respect to bait type or capture order. Our findings do not support the predictions of the POLS concept and, consistent with earlier studies in perch, suggest that angling may not drive selection against boldness in this species.


Assuntos
Agressão , Metabolismo Basal , Pesqueiros , Percas/fisiologia , Tiroxina/sangue , Animais , Comportamento Alimentar , Finlândia , Percas/genética , Fenótipo
13.
Curr Zool ; 62(2): 109-115, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29491897

RESUMO

Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA